A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation
نویسندگان
چکیده
The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.
منابع مشابه
Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملProbability Approach for Prediction of Pitting Corrosion Fatigue Life of Custom 450 Steel
In this study, the pitting type of corrosion growth characteristics, fatigue crack initiation and propagation behavior; axial fatigue tests were carried out on precipitation hardened martensitic Custom 450 steel in the air and 3.5wt% NaCl solution. Using the ratio of the depth to the half-width of the pits; (a/c)= 1.5±0.2 the corrosion pit depth growth law was obtained as a function of stress a...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملThe machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملNUMERICAL INVESTIGATION OF CRACK ORIENTATION IN THE FRETTING FATIGUE OF A FLAT ROUNDED CONTACT
The growth of slant cracks by fretting fatigue of a half plane in contact with a flat rounded pad was studied. The mode I and mode II stress intensity factors for cracks of various lengths and directions were calculated using the semi-analytical method of the distribution of dislocations, and their cumulative effect on the crack growth was investigated using the strain energy density criterion....
متن کامل